SPATIOTEMPORAL CORRELATION OF SPINAL NETWORK DYNAMICS UNDERLYING SPASMS IN CHRONIC SPINALIZED MICE

Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice

Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice

Blog Article

Spasms after spinal cord injury (SCI) are debilitating involuntary muscle contractions that have been associated with increased motor neuron excitability and decreased inhibition.However, whether spasms involve activation weleda skin food 75ml best price of premotor spinal excitatory neuronal circuits is unknown.Here we use mouse genetics, electrophysiology, imaging and optogenetics to directly target major classes of spinal interneurons as well as motor neurons during spasms in a mouse model of chronic SCI.We find that assemblies of excitatory spinal interneurons are recruited by sensory input into functional circuits to generate persistent neural activity, which interacts with both the graded expression of plateau potentials in motor neurons to generate spasms, caruso rhodiola and inhibitory interneurons to curtail them.

Our study reveals hitherto unrecognized neuronal mechanisms for the generation of persistent neural activity under pathophysiological conditions, opening up new targets for treatment of muscle spasms after SCI.

Report this page